Microwave Plasma-Enhanced Chemical Vapor Deposition of Carbon Nanostructures Using Biological Molecules
نویسندگان
چکیده
منابع مشابه
Determination of Optical Properties in Germanium Carbon Coatings Deposited by Plasma Enhanced Chemical Vapor Deposition
In this research, Germanium-carbon coatings were deposited on ZnS substrates by plasma enhanced chemical vapor deposition (PECVD) using GeH4 and CH4 precursors. Optical parameters of the Ge1-xCx coating such as refractive index, Absorption coefficient, extinction coefficient and band gap were measured by the Swanepoel method based on the transmittance spectrum. The results showed that the refra...
متن کاملEvaluation of Vapor Deposition Techniques for Membrane Pore Size Modification
The suitability of three vapor deposition techniques for pore size modification was evaluated using polycarbonate track etched membranes as model supports. A feature scale model was employed to predict the pore geometry after modification and the resulting pure water flux. Physical vapor deposition (PVD) and pulsed plasma-enhanced chemical vapor deposition (PECVD), naturally, form asymmetric na...
متن کاملGrowth of carbon nanostructures upon stainless steel and brass by thermal chemical vapor deposition method
The lack of complete understanding of the substrate effects on carbon nanotubes (CNTs) growth poses a lot oftechnical challenges. Here, we report the direct growth of nanostructures such as the CNTs on stainless steel 304and brass substrates using thermal chemical vapor deposition (TCVD) process with C2H2 gas as carbon sourceand hydrogen as supporting gas mixed in Ar gas flow. We used an especi...
متن کاملChemical Vapor Deposition of Carbon Nanostructures and Carbon Nanotubes-Reinforced Composites
The vapor deposition of open-networked carbon nanostructures and carbon nanotubes (CNTs)-reinforced composites have been developed and studied parametrically. Carbon nanostructures, including nano-tubes, nano-foams, nanoparticles, and nano-walls, have been deposited on catalyst-assisted substrates using microwave plasma electron cyclotron resonance-chemical vapor deposition (ECR-CVD) system at ...
متن کاملDendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition.
Using a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.
متن کامل